咨询热线

13651969369

当前位置:首页   >  产品中心  >  二维材料  >  ag华体会   >  钙钛矿材料 DPP-DTT

钙钛矿材料 DPP-DTT

简要描述:Luminosyn™ DPP-DTT (also referred to as PDPP2T-TT-OD) is now available featuring:



High molecular weight - higher molecular weight offers higher charge mobility

High purity - DPP-DTT is purified v

  • 更新时间:2024-06-04
  • 产品型号:
  • 厂商性质:生产厂家
  • 访  问  量:1359

详细介绍

Luminosyn™ DPP-DTT (also referred to as PDPP2T-TT-OD) is now available featuring:

 

High molecular weight - higher molecular weight offers higher charge mobility

High purity - DPP-DTT is purified via Soxhlet extraction with methanol, hexane and chlorobenzene under an argon atmosphere

Batch-specific GPC data - so you have confidence in what you are ordering. Also, GPC data is always convenient for your thesis and publications

Large quantity orders - so you can plan your experiments with polymer from the same batch

 

价格

Batch

Quantity

Price

M315

100 mg

4800.45

M315

250 mg

8011.45

M315

500 mg

12635.29

M315

1g

20871.50

M315

2g

36926.50

*for 5 - 10 grams order quantity, the lead time is 4-6 weeks.

 

Batch Details

Batch

Mw

Mn

PDI

M314

292,200

74,900

3.90

M315

278,781

76,323

3.65

 

General Information

Synonyms

PDBT-co-DTT

PTT-DTDPP

PDPP-DTT

DPPT-TT

DPP-TTT

PDPP2T-TT

PDPP2T-TT-OD

DPPDTT

Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)]

CAS number

1260685-66-2 (1444870-74-9)

Chemical formula

(C60H88N2O2S4)n

HOMO/LUMO

HOMO = -5.2 eV, LUMO = -3.5 eV [2]

Solubility

Chloroform, chlorobenzene and dichlorobenzene

Classification/Family

Bithiophene, Thienothiophene, Organic semiconducting materials, Low band-gap polymers, Organic photovoltaics, Polymer solar cells, OFETs


Chemical structure and product image of DPP-DTT, CAS No. 1260685-66-2.

 

OFET and Sensing Applications
The exceptional high mobility of this polymer of up to 10 cm2/Vs [2] via solution-processed techniques, combined with its intrinsic air stability (even during annealing) has made PDPP2T-TT-OD of significant interest for OFET and sensing purposes.

While the highest mobilities require exceptional molecular weights of around 500 kD (and with commensurate solubility issues), high mobilities in the region of 1-3 cm2/Vs can still be achieved with good solution-processing at around 250 kD. As such, we have made a range of molecular weights available to allow for different processing techniques.

In our own tests, we have found that by using simple spin-coating onto an OTS-treated silicon substrate (using our prefabricated test chips), high mobilities comparable to the literature can be achieved  (1-3 cm2/Vs). Further improvements may also be possible with more advanced strain-inducing deposition techniques.

Example OFET characteristics for DPP-DTT (M313) solution processed from chlorobenzene on a 300 nm SiO2 substrate treated with OTS. Output characteristic (top left), transfer curves (top right), mobility fitting (bottom left) and calculated mobility (bottom right).

 

Photovoltaic Applications
Although shown as a promising hole-mobility polymer for OFETs, when used as the donor material in a bulk heterojunction photovoltaic (with PC70BM as the acceptor), initial efficiencies of 1.6% were achieved for DPP-DTT [3]. The low device metrics were attributed to poor film morphology. However, a higher efficiency of 6.9% was achieved by using thicker film (220 nm) [4].

PDPP2T-TT-OD has also recently been used successfully as an active-layer dopant material in PTB7-based devices [5]. An improvement in device performance was observed, with average efficiencies increasing from 7.6% to 8.3% when the dopant concentration of DPP-DTT was 1 wt%. The use of DPP-DTT as a high-mobility hole-interface layer for perovskite hybrid devices has also been investigated [6].

Synthetic route
DPP-DTT synthesis: DPP-DTT was synthesised by following the procedures described in [2] and [3] (please refer to the following references):

With 2-thiophenecarbonitrile and dimethyl succinate as starting materials in t-amyl alcohol, it gave 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione. Alkylation of 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione with 2-octyldodecylbromide in dimethylformamide afforded 3,6-bis(thiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione. Further bromination gave 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (M1).

Further reaction of M1 with 2,5-bis(trimethylstannyl)thieno[3,2-b]thiophene (M2) under Stille coupling conditions gave the target polymer DPP-DTT, which was further purified via Soxhlet extraction with methanol, hexane and then chloroform.

具体价格请咨询在线客服 


产品咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
泰州巨纳新能源有限公司
  • 联系人:陈谷一
  • 地址:江苏省泰州市凤凰西路168号
  • 邮箱:taizhou@sunano.com.cn
  • 电话:021-56830191
联系我们

扫一扫以下二维码了解更多信息

销售微信咨询

网站二维码

版权所有©2024泰州巨纳新能源有限公司All Rights Reserved    备案号:苏ICP备17000059号-2    sitemap.xml    总访问量:63601
管理登陆    技术支持:化工仪器网    
Baidu
map